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ABSTRACT: Peptide-based drug discovery has surged with the development of peptide hormone-derived analogs for the treatment
of diabetes and obesity. Machine learning (ML)-enabled quantitative structure−activity relationship (QSAR) approaches have
shown great promise in small molecule drug discovery but have been less successful in peptide drug discovery due to limited data
availability. We have developed a peptide drug discovery platform called streaMLine, enabling rigorous design, synthesis, screening,
and ML-driven analysis of large peptide libraries. Using streaMLine, this study systematically explored secretin as a peptide backbone
to generate potent, selective, and long-acting GLP-1R agonists with improved physicochemical properties. We synthesized and
screened a total of 2688 peptides and applied ML-guided QSAR to identify multiple options for designing stable and potent GLP-1R
agonists. One candidate, GUB021794, was profiled in vivo (S.C., 10 nmol/kg QD) and showed potent body weight loss in diet-
induced obese mice and a half-life compatible with once-weekly dosing.

■ INTRODUCTION
Peptide-based therapeutics are gaining increasing attention in
the pharmaceutical industry. Peptide hormones have both high
receptor potency and selectivity, minimizing off-target effects
and generally translating into an excellent drug safety and
efficacy profile.1,2 These features make endogenous peptides a
good starting point for the development of novel peptide
therapeutics. However, native unmodified peptides are rarely
used as drugs because of their inherent limitations due to their
very short systemic half-life and unfavorable physicochemical
properties which must be circumvented to develop peptide
molecules suitable for therapeutic use.1,2

Early drug discovery phases aim to improve the properties of
candidate molecules by modifying their chemical structure.
Such improvements can be achieved by rational design using
an iterative and often laborious approach, where small batches
of compounds are screened in multiple rounds of optimization.
In contrast, when larger data sets are available, it is useful to
construct mathematical models that capture the quantitative
structure−activity relationship (QSAR) to guide drug design.
QSAR models have been widely used in the development of
small molecule therapeutics e.g., to discover novel binders3 and

elute chemical motifs necessary for binding.4 For peptide drug
discovery, however, data are often sparse, and this has limited
the use of machine learning (ML) for QSAR optimization. The
amount and composition of data are crucial parameters for
QSAR methods,5 which is why it is advantageous to generate
data that are specifically designed for modeling purposes.
Glucagon-like peptide-1 (GLP-1) is an endogenous 30-

amino acid peptide hormone produced by enteroendocrine L-
cells and secreted into the hepatic portal in response to food
intake. By activating GLP-1 receptors in the pancreas, native
GLP-1 serves as an incretin hormone stimulating insulin
release and inhibiting glucagon secretion.6 In addition, GLP-1
is an important appetite regulator by activating central GLP-1
receptors (GLP-1R).7 In line with this, long-acting GLP-1R
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agonists such as semaglutide have been shown to be important
tools in the treatment of diabetes and obesity.8,9 However,
GLP-1 is known to self-assemble into amyloid fibrils and the
intrinsic physical instability of GLP-1 poses a significant
challenge in synthesis and formulation.10,11

Recent drug development efforts have taken advantage of
the varying degrees of sequence homology of GLP-1, glucagon,
and glucose-dependent insulinotropic polypeptide (GIP) to
engineer unimolecular dual or triple agonists targeting
receptors of GLP-1, glucagon, and GIP. This approach has
proven to be a successful concept for treatment intervention in
diabetes and obesity.12−17

Alternatively, one could further envision to exploit sequence
homology to obtain beneficial peptide properties not only in
terms of receptor pharmacology, but also from a synthesis and/
or formulation perspective.18

Secretin is a 27-amino acid peptide hormone that together
with GLP-1 belongs to the glucagon superfamily of structurally
related peptide hormones all targeting family B G-protein
coupled receptors (GPCRs).19 This family of peptides is linear
peptides comprising 25 or more residues allowing them to

span two key receptor domains. The C-terminal region of the
peptides binds to the extracellular domain of their respective
receptor whereafter the N-terminal region interacts with the
core domain of the receptor enabling receptor activation.20

The sequence identity of secretin and GLP-1 is shown in Table
1.
Contrary to other peptides of the glucagon family, such as

GLP-1, secretin is not reported to aggregate.21 Thus, secretin
could serve as the starting backbone with improved
physicochemical properties compared to GLP-1.
The main physiological role of secretin is to regulate water

homeostasis and bicarbonate secretion from the exocrine
pancreas and inhibit gastric acid secretion by activating the
secretin receptor (SCTR),19 i.e., endogenous activities we
intended not to activate.
Hence, we aimed to leverage the more favorable

physicochemical properties of secretin to develop a selective
and physicochemical stable GLP-1R agonist based on the
secretin backbone. With this aim, we exploited an innovative
ML-based peptide drug discovery platform termed streaMLine
and demonstrated how streaMLine effectively facilitates

Table 1. Alignment of GLP-1, Secretin, Dual-Agonist, and GLP-1R Selective Agonist GUB021794a

aOrigin of substitutions are highlighted in colors. * denotes attachment of half-life extender: C20DA-gGlu-2xOEG.

Figure 1. Overview of the data generation and data analysis workflow of the streaMLine platform. Initially a systematic library of peptides is
designed, typically on the order of hundreds to thousands of peptides. The crude library of peptides are prepared using solid-phase-peptide
synthesis (SPPS) and cleaved from the resin. Failed peptide samples are identified by high-resolution mass spectrometry and excluded from the
analysis. A panel of high-throughput assays for determining receptor potency and physicochemical properties at different pH levels are measured.
For each assay end point, a random forest model is trained and used for inferring key amino acids substitutions that determine peptide properties.
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accelerated development of novel peptide-based therapeutics

by rigorous design and ML-driven analysis of large peptide

libraries.

■ RESULTS

The streaMLine Platform. The streamline platform is a
drug development tool where peptide libraries are designed,
synthesized, and screened to provide large data sets suitable for
machine learning (ML)-enabled quantitative structure−activity

Figure 2. Schematic representation of the parallelized development process for generating a selective and stable GLP-1R agonist based on the
secretin backbone. The two-step process for converting secretin into a preclinical drug candidate. First, a minimal GLP-1R agonist was developed
by introducing only necessary GLP-1 residues to provide activation of GLP-1R. Second, a parallelized workflow was initiated where a deep
mutational scan, a glutamate scan, and a lipidation scan provided a blueprint for generating various soluble, physically stable, and half-life extended
GLP-1R agonist.

Figure 3. Overview of substitution-effects from a GLP-1 dial-in scan in the secretin backbone. (A) Effect of introducing GLP-1 residues into the
secretin backbone. For each assay end point, a random forest model was trained on 768 peptides and used to compute SHAP values determining
the level of contribution of each amino acid substitution. Delta mean SHAP values denote the contribution of substituting the secretin residue with
the corresponding GLP-1 residue. (B) Detailed overview of SHAP values for selected positions, where substitutions were introduced to obtain
analogs with dual GLP-1R and SCTR potency. Small points denote SHAP values per individual peptide and large points denote mean SHAP value.
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relationship (QSAR) approaches. An overview of the learning
cycles in the streamline platform is illustrated in Figure 1.
In the streaMLine platform, peptides are synthesized using

solid-phase peptide synthesis (SPPS) in a plate format. The
crude peptide libraries are screened directly in functional
potency assays and in preformulation assays for determination
of, for example, fibrillation and solubility. Each peptide library
is analyzed by using high-resolution mass spectrometry

(HRMS) to determine purity. The average purity per library
ranges between 30 and 50%, and peptide samples with less
than 10% purity are excluded from further analysis.
The peptide libraries are designed in a highly systematic

manner, where each substitution is observed multiple times in
combination with other substitutions. Typically, peptide
libraries consist of hundreds to thousands of peptides, which
enables robust evaluation of each substitution in multiple

Figure 4. Overview of substitution-effects from a deep mutational scan (DMS) in a secretin derived GLP-1R and SCTR dual agonist. (A) Effect of
single mutations in all positions. For GLP-1R and SCTR potency, random forest models were trained on 1152 peptides encoded using z-scales.23

From the models, the effect of single mutations was computed to normalize for assay batch effects. (B) Detailed overview of selected positions
highlighting the effect of individual substitutions.
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chemical contexts, i.e., different backbones. The peptide
sequences together with assay data are used as training data
to construct random forest models22 describing the relation-
ship between peptide sequence and assay end point. In the
training data, the systematic peptide library is encoded using
amino acid descriptors (z-scales23 or one-hot encoding), and
potential laboratory batch effects are incorporated in the model
to normalize, e.g., synthesis and assay plate differences. For
each assay end point, a new model is trained and used for
inferring the key amino acid substitutions affecting the end
point. Model inference is done either by (1) correcting assay
data for batch effects and amino acid similarity and thereby
computing normalized assay measurements for individual
peptides, (2) or by computing Shapley Additive explanation
(SHAP) values.24 SHAP values are used to explain the effect of
each amino acid substitution on the end point and can thus be
used to infer the key drivers in the data set. After model
inference, the most promising substitutions are assessed in a
new peptide library design.
Data points obtained on crude peptides are challenging to

interpret individually, but in the context of the systematically
designed peptide libraries, the random forest model provides
accurate guidance for identifying the effect of substitutions.
The performances of all models generated in this study are
given in Figure S1.
Development of Dual GLP-1R-SCTR Agonists. We

applied the streaMLine platform to generate selective GLP-1R
agonists with suitable physicochemical parameters starting
from the secretin backbone.
The native secretin peptide has no GLP-1R potency, hence

to identify both desired substitutions a starting point with
some GLP-1R potency was needed. We therefore aimed at
generating first a dual GLP-1R-SCTR agonist that could be
used as an intermediate for further optimization (Figure 2).
A peptide library was designed to evaluate the effect of

introducing GLP-1 residues into the native secretin. Non-
conserved residues (position 2−3, 9−10, 12−14, and 17−25),
were changed into the corresponding GLP-1 residue, one at a
time or in combinations (Table 1). The library (768 peptides)
was screened by determining GLP-1R and SCTR potency
(EC50), fibril formation (ThT assay), and solubility
(turbidity), and random forest models were trained to
determine the relationship between measured end points and
the amino acid sequence of peptides. From these models, we
computed SHAP values to determine the level of contribution
of each substitution.22 Substitutions with positive SHAP values
increase the end point, while substitutions with negative SHAP
values decrease the end point.
Amino acid positions 2, 9, 18, and 22 had the highest

positive SHAP values for GLP-1R EC50, thus being critical for
improving GLP-1R potency. Conversely, positions 3, 9, 10, 14,
and 19 exhibited the most negative SHAP values for SCTR
EC50, hence being critical for abolishing SCTR potency or
enhancing GLP-1R selectivity (Figure 3A).
In addition to potency determination, the propensity for

fibril formation and a reduction in solubility was most
pronounced when mutating amino acid positions 12, 14, 18,
19, 21, 23, and 25. The introduction of GLP-1 residues at these
positions could thus negatively affect the physicochemical
properties of a peptide (Figure 3B).
Based on these learnings, five substitutions were introduced

in the secretin backbone to achieve an agonist with dual
activity on GLP-1R and SCTR (Table 1). Mutations 9D, 18A,

and 22F increased GLP-1R potency. Likewise, 2A was found to
increase the GLP-1R potency. The substitution of alanine for
2-aminoisobutyric acid (Aib) is well-known to prevent DPP-4
proteolytic cleavage of the GLP-1 backbone without
compromising GLP-1R potency9,25 hence 2Aib was intro-
duced. The 3E mutation prevented the isomerization of the
native aspartic acid residue in secretin without influencing
receptor potency. Next, a comprehensive sequence exploration
was performed on the dual GLP-1R-SCTR agonist, i.e., a deep
mutational scan.
Development of Selective GLP-1R Agonists. A deep

mutational scan (DMS) was designed such that all-natural
amino acids (except cysteine and methionine) were introduced
in all sequence positions, either as single mutations or as
double mutations. The library consisted of 1152 peptides,
which were screened for GLP-1R and SCTR potency. Based
on these data, we trained random forest models on the
relationship between all assay end points and the peptide
amino acid sequence. The models were used to normalize for
batch effects (synthesis and assay plate) and the resulting
pEC50 values for each single mutant are shown in Figure 4.
The DMS identified several receptor-selectivity-promoting

substitutions. For each position, substitution maps were
obtained allowing us to navigate toward desired properties,
including GLP-1R potency and/or improved receptor
selectivity. Rather than identifying a single compound with
desired properties through an iterative design process, the
DMS generated a solution space of possible amino acid
substitutions from which peptide candidates could be designed
and synthesized. A selection of substitutions is described
below.
We identified amino acid positions 9, 12, and 25 where

substitutions could significantly improve GLP-1R selectivity by
increasing GLP-1R potency and decreasing SCTR potency
(Figures 4A, B and S2). At position 12, several substitutions
improved GLP-1R selectivity. 12Y most effectively improved
GLP-1R potency and reduced SCTR potency, whereas 12E
only reduced SCTR potency. Aromatic residues 25H, 25F,
25Y, and 25W improved GLP-1R potency while also reducing
SCTR potency, with 25H being the most effective. At position
9, only the native GLP-1 residue 9D improved potency and
selectivity.
In addition, amino acid positions 10, 14, and 19 were

identified to improve selectivity by decreasing SCTR potency
with a neglectable effect on GLP-1R potency (Figures 4A, B
and S2). 10I and 10V reduced SCTR potency without
significantly compromising GLP-1R potency. A similar effect
was seen by substituting position 14 to F, Y, or L.
Positions 16, 18, and 22 could be substituted to enhance

GLP-1R selectivity. For position 16, all mutations, except P,
increased GLP-1R potency (Figure S2). For positions 18 and
22, 18A, 18Aib, 18L, 18, 22F, 22W, and 22Y considerably
improved GLP-1R potency while only marginally affecting
SCTR potency.
Improving Solubility and Conjugation of Fatty Acid.

In parallel with DMS, we systematically investigated the effect
and tolerability of glutamate substitution and derivatization
with half-life extenders (HLEs) in our dual GLP-1R-SCTR
agonist. Glutamate substitutions can be used to modulate the
isoelectric point of a peptide, thereby improving solubility at
the desired formulation pH.26 Fatty acid conjugation is a well-
described technology broadly applied to extend the half-life of
peptides from minutes to hours. Native secretin and GLP-1
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have reported half-lives in the range of 2−4 min.27,28

Conjugation with fatty diacids facilitates strong binding to
serum albumin, thus reducing renal clearance and enzymatic
degradation.28,29

Fatty acid conjugation was investigated by attachment to the
epsilon nitrogen of lysines via linker moieties. The combined
fatty acid and linker is here referred to as the half-life extender
(HLE). Six different HLEs were evaluated in each position
representing different lengths of fatty diacids, octadecanedioic
acid (C18DA) and eicosanedioic acid (C20DA), and varying
combinations of linker moieties, L-γ-glutamyl (gGlu) and 3,8-
dioxa-aminooctanoic acid (OEG).
A library of 576 peptides was designed where each HLE at

each position was examined in backbones comprising 0, 1, or 2
glutamate mutations. All positions were screened, except a few
positions in the pharmacophore essential for receptor
activation. For the glutamate substitution screening, positions
1−5, 7, and 8 were excluded, with position 15 already being a
glutamate. For the HLE screening, positions 1−5, 7−9, 18, and
22 were excluded. The library was screened for GLP-1R and
SCTR potency and turbidity. For each end point, we
computed SHAP values to determine the contribution of
each mutation relative to the backbone residue (Figure 5).
Evaluating the effect of glutamate mutations on GLP-1R

potency revealed several amino acid positions where glutamate
was tolerated, i.e., positions 12, 16, 17, 19, 20, 21, 24, 25, and

27. Position 12, 16, and 24 were found to have a positive
impact on GLP-1R potency compared to the backbone
residue. Among these positions, we found the largest reduction
in turbidity from introducing 16E and 24E, indicating
improved solubility (Figure 5B).
For the HLEs, we found no major difference in potency

across the different fatty acids and/or linker combinations and
therefore analyzed the different HLEs as a single substitution.
Evaluating the effect of attaching HLEs on the GLP-1R
potency revealed several positions where HLEs were tolerated,
i.e., positions 10, 12, 14, 16, 17, 20, 21, 24, 25, and 27. For
positions 12, 14, and 16, the attachment of HLEs was found to
have positive effects on GLP-1R potency compared to the
backbone residue, with positions 12 and 14 also inducing GLP-
1R selectivity. This selectivity effect of positions 12 and 14 was
consistent with the observations from the DMS, where GLP-
1R selectivity could also be improved by mutating these
positions (Figure 4). Importantly, no effect on turbidity was
observed when HLEs were conjugated to positions 12 (Figure
5A) and 14 (Figure 5A, B).
Fine-Tuning Potency, Selectivity, and Physicochem-

ical Properties. Previous sections described our parallel
peptide development process. The conjugation of HLEs could
dramatically alter the properties of a peptide.26 We therefore
set out to investigate if an HLE was compatible with positions
and substitutions found to be selectivity-inducing in the deep

Figure 5. Overview of substitution-effects from glutamate scan and half-life extender (HLE) scan in a secretin-derived GLP-1R and SCTR dual
agonist. (A) Effect of introducing HLEs or glutamate. For each assay end point, a random forest model was trained on 576 peptides and used to
compute SHAP values determining the level of contribution of each amino acid substitution. Delta mean SHAP values denote the contribution of
substituting the backbone residue with either a glutamate or HLE. (B) Detailed overview of SHAP values for selected positions that tolerate HLE
derivatization or glutamate substitution for improving half-life and solubility, respectively. Small points denote SHAP values per individual peptide
and large points denote mean SHAP value.
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mutational scan. Furthermore, this library would enable us to
rank the mutations relative to each other and according to
desired end points to identify an optimal combination of
substitutions providing a selective GLP-1R agonist with
desired physicochemical properties. We designed a library of
192 compounds where selected substitutions were evaluated at
positions 3, 10, 12, 18, 19, and 21 in the dual agonist backbone
(Table 1) being lipidated at position 14 with the HLE:
C18DA-gGlu-2xOEG. The selected substitutions all induce
selectivity in differing degrees, while some also have different
physicochemical properties, such as opposite charges, hydro-
phobicity, helix-inducing effect, etc. In addition to receptor
potency, we also assessed the solubility and the propensity for
forming amyloid fibrils using a Thioflavin T (ThT) assay. We
trained random forest models for each end point and
calculated SHAP values to determine the contribution of
each mutation to the relevant end points in a lipidated
backbone (Figure 6).
In terms of selectivity, we found that 10V and 12Y provided

the greatest positive effect by increasing the GLP-1R potency
and decreasing the SCTR potency. For 12Y this also led to
increased turbidity, meaning that this mutation should be
accompanied by mutations that improve solubility.
Interestingly, three mutations were identified to diminish the

propensity for fibril formation, 18Aib, 19Aib, and 21E, where
the two former did not affect potency on the two receptors. We
further used SHAP values to determine the interaction effect of
these mutations that prevent fibril formation and found that
the reduction in fibril formation was not additive when
combining 18Aib and 19Aib (Figure S3). Thus, only one of the
mutations is necessary to provide a reduction in fibrillation
propensity.

Design and Characterization of Final Candidate.
Based on all of the substitution options identified, we designed
GUB021794. The peptide sequence is shown in Table 1. We
aimed for a peptide candidate with minimal (<10 fold) GLP-
1R potency loss compared to native GLP-1 but with a 10,000-
fold selectivity ratio (GLP-1R over SCTR). The peptide
candidate should be soluble, chemically- and physically stable
at neutral pH and have a pharmacokinetic profile compatible
with once-weekly dosing in humans. The in vitro character-
ization and pharmacokinetic properties of GUB021794 are
summarized in Table 2. GUB021794 is potent and selective
with a GLP-1R potency of 0.018 nM and an hSCTR potency
of 190 nM.
For GUB021794, we modified the dual-acting backbone at

positions 10, 12, 14, 16, 18, 24, and 25. The pronounced GLP-
1R potency and high selectivity were achieved by combining
substitutions identified in the DMS to have a positive effect on
those end points. From the DMS (Figure 4), we identified
positions where substitutions could induce selectivity by
decreasing SCTR potency, while also improving GLP-1R
potency or not significantly impacting GLP-1R potency. For
this design, we decided to pursue 12Y and 25H as both were
found to improve GLP-1R potency while also decreasing
SCTR potency. 10V was introduced to further decrease SCTR
potency without significantly reducing GLP-1R potency. In the
glutamate scan (Figure 5), we identified two positions where
glutamate had a positive impact on GLP-1R potency while also
decreasing the turbidity of the peptides. Hence, glutamates
were introduced in positions 16 and 24 to achieve a solubility
of at least 10 mg/mL. The HLE scan (Figure 5) identified two
positions, 12 and 14, where the attachment of a HLE-induced
selectivity without compromising solubility. For the design of

Figure 6. Overview of substitution-effects from selected substitutions in secretin derived selective GLP-1R agonist. Effect of combining selected
substitutions identified in the deep mutational scan, HLE scan, and glutamate scan. For each assay end point a random forest model was trained on
192 peptides and used to determine SHAP values determining the level of contribution of each amino acid substitution. Mean SHAP values denote
the contribution of each substitution relative to the data set mean.

Table 2. Profiling of Optimized Secretin-Derived GLP-1R Agonist

compound
hGLP1R

EC50 (nM)
hSCTR EC50

(nM)
selectivity
ratioa

solubility pH 7.0 and 8.0
(mg/mL)

fibrillation pH 7.0
and 8.0

chemical stability pH 7.0 and 8.0
(% degradation)

rat half-life,
i.v. (h)

secretin 2300 0.0023 10−6 NA no 8.6/9 NA
GLP-1 0.002 800 400,000 NA no 3.8/8.1 NA
GUB021794 0.018 190 10,556 >10 no 1.4/0.55 22
aSelectivity ratio was calculated as hSCTR EC50 divided by hGLP1R EC50.
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GUB021794, the HLE was attached to position 14 to improve
GLP-1R potency and selectivity, while maintaining high
solubility. Finally, we identified two positions where Aib was
found to decrease the propensity for forming amyloid fibrils
(Figure 6). In GUB021794, 18Aib was introduced to preserve
the nonfibrillating properties at neutral pH.
While improving solubility and potency, the substitution of

positions 24 and 25 additionally removes a sequence motif,
QG, prone to cause chemical instability due to the potential
deamidation of glutamine positioned next to glycine. Addi-
tionally, the isomerization of aspartic acid was addressed by
substituting aspartic acid in position 3 for glutamic acid and by
introducing the sterically hindered valine in position 10 next to

9D. Therefore, we obtain a candidate with high chemical
stability at neutral pH.
Based on the sequence homology of peptides in the

glucagon superfamily of structurally related peptide hormones,
GUB021794 was tested for cross-reactivity toward other
receptors in the family. GUB021794 showed no activation of
the GIPR, GLP-2R, or the GCGR when tested at
concentrations up to 3000 nM (Table S2).
The albumin binding affinity of fatty diacids correlates with

the length of the fatty diacids; C18- and C20 diacids have the
highest affinity.29 A C20DA-gGlu-2xOEG has previously been
described to provide a once-weekly dosing regimen in
humans12 while 2Aib is known to protect against DPP-4
proteolytic cleavage.9,25 Thus, to achieve a long-acting drug

Figure 7. GUB021794 dose dependently reduces body weight and adipose tissue mass in DIO mice. DIO mice were treated subcutaneously once
daily (QD) with vehicle, semaglutide (10 nmol/kg), and ascending doses of GUB021794 (3, 10, or 30 nmol/kg) for 28 days. (A) Body weight. (B)
Body weight change (% of day 1) at the end of the study. (C) Daily food intake. (D) Cumulative food intake day 28. (E) Fat mass day 28. (F)
Plasma exposure day 29, (samples taken 24 h after dosing). Values expressed as mean of n = 10 + SEM. Dunnett’s test one-factor linear model. *: P
< 0.05, **: P < 0.01, ***: P < 0.001 compared to Vehicle.
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candidate compatible with once-weekly dosing, we attached
C20DA-gGlu-2xOEG to position 14, while 2Aib was
introduced to prevent DPP-4 proteolytic cleavage.
GUB021794 demonstrated a prolonged pharmacokinetic

half-life of 22 h after intravenous dosing in rats. Such a
pharmacokinetic profile has previously been shown to translate
to a once-weekly pharmacokinetic profile in humans.29,30

Metabolic Effects of GUB021794 in DIO Mice.
GUB021794 was characterized in a mouse model of diet-
induced obesity (DIO). DIO mice were treated subcuta-
neously once daily with vehicle, semaglutide (10 nmol/kg), or
GUB021794 (3, 10, or 30 nmol/kg) for 28 days. 28-day
treatment with GUB021794 promoted a dose-dependent
reduction in body weight, on par with an equimolar dose
(10 nmol/kg) of semaglutide (Figure 7A, B). Food intake
(Figure 7C) was dose-dependently reduced throughout the
study with maximal effect on treatments days 2−3 (Figure
7D). The marked reduction in body weight and food intake
was reflected by a substantial reduction in whole-body adipose
tissue mass (Figure 7E). Plasma exposure in DIO mice (Figure
7F) was dose-dependent and supported the extended half-life
of GUB021794.
Overall, the preclinical data demonstrate that GUB021794 is

a potent long acting GLP-1R agonist promoting robust body
weight loss in DIO mice comparable to clinically approved
GLP-1R agonists, such as semaglutide.31,32

■ DISCUSSION
In this study, we demonstrated the capability of the
streaMLine platform to accelerate the drug discovery process
of peptide pharmaceuticals. We systematically explored
secretin as a peptide backbone to generate potent, selective,
and long-acting GLP-1R agonists without the intrinsic physical
instability previously reported for GLP-1.10,11 A total of 2688
peptides were synthesized, screened, and analyzed using an
ML-guided approach to map out a solution space for
generating GLP-1R agonists derived from the secretin
backbone. Based on this solution space, we designed and
characterized a novel GLP-1R agonist, GUB021794, that
showed potent body weight loss in DIO mice, a pharmaco-
kinetic profile compatible with once-weekly dosing in humans,
and beneficial physicochemical properties.
The key features employed in the streaMLine platform are

(1) systematic peptide library design where each mutation is
observed multiple times in multiple different backbones, (2)
analysis of large libraries consisting of 100−1000 s of crude
peptides, and (3) ML-guided peptide design. The screening of
peptide crudes leads to faster data generation, as the laborious
peptide purification following SPPS can be omitted. This leads
to faster generation of lead molecules as well as potential
identification of better compounds as a larger chemical space
can be screened using the same amount of resources. Despite
the contribution of synthesis byproducts in the individual assay
measurements of the peptide crudes, we observe that these
contributions have a negligible effect on the overall data
interpretation when analyzed as part of a larger systematic
peptide library design.
Following the crude screening campaign of this study, we

subsequently purified and profiled GUB021794, and verified
the conclusions obtained from the crude libraries. Aside from
verifying the conclusions obtained during the crude screenings,
GUB021794 also demonstrated that the thorough screening
approach enabled the generation of a very potent therapeutic

peptide. Despite being derived from the alternative starting
point secretin, GUB021794 showed a weight-lowering effect in
DIO mice on par with semaglutide, a clinically approved GLP-
1 receptor agonists.31,32

In addition to verifying our screening approach by in-depth
characterization of GUB021794, several of the key amino acid
substitutions identified in this study have been reported
previously. For example, the amino acid positions being
important for GLP-1R potency (Figure 2A), agreed with
previous studies reporting the high importance of phenyl-
alanine in position 2233 and loss in GLP-1R potency when
introducing 2S34 and 9E into a GLP-1 context.25 Furthermore,
we found position 19 to be important for SCTR potency in
agreement with previous SAR efforts on the secretin
backbone.35 The physicochemical screening enabled the
identification and validation of mutations associated with fibril
formation of GLP-1R agonists. We identified three sub-
stitutions preventing fibril formation, 18Aib, 19Aib, and 21E
which could be responsible for the formation of amyloid fibrils
of GLP-1R agonists previously reported.10,11

Previous studies using QSAR for peptide optimization have
been limited to case studies on peptide families with large data
sets publicly available such as antimicrobial peptides
(AMPs),36 Major histocompatibility complex (MHC)37 and
antitumor activity of peptides.38 Other related studies have
extracted information about QSAR from smaller publicly
available data sets. Deng et al. collected a data set of 141
unique angiotensin-converting enzyme (ACE) inhibitory
dipeptides, and fitted a regression model to IC50 values with
model predictions being validated by synthesis and in vitro
testing of five novel ACE inhibitory dipeptides.39 Although not
evaluating the physicochemical properties of the developed
peptides, the study by Deng et al. highlights the great potential
of peptide QSAR, even based on a limited data set. Our study
demonstrates the importance of co-optimizing potency and
physicochemical properties to avoid developing potent but
unstable peptides.
In addition, we have demonstrated how the platform allows

multiparameter screening in a parallelized workflow, thus
enabling timeline-efficient identification of learnings to obtain
peptides with drug properties early in a project. This
accelerated approach further enables fast evaluation of the in
vitro/in vivo correlation. In case, the peptide design needs re-
evaluation, and the already generated data sets provide
alternative solutions to be evaluated without significant
timeline delay.
While the aim of the present work was to dial out the

secretin receptor potency and leverage the more favorable
physicochemical properties of secretin, the streaMLine plat-
form is highly applicable for the development of other peptide-
based therapies such as polyagonists targeting multiple
receptors, since it enables fine-tuning potency on multiple
receptors and allows for exploration of a large chemical
solution space. Another application of streaMLine could be the
development and potency optimization of nonendogenous
peptides identified de novo by display technologies including
mRNA display,40 or in the development of peptides containing
noncanonical amino acids.41 Recent advances in artificial
intelligence (AI) with pretrained deep learning models such as
AlphaFold42 and protein language models (PLMs)43 ,44 have
enabled improved prediction of protein and peptide properties.
For example, de novo design of protein binders has been
drastically improved recently45 making peptide-based therapies
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approachable for previously undruggable targets. Applying
QSAR methods as demonstrated in this study could aid in
quickly advancing de novo peptide hits to the clinical stage.

■ CONCLUSIONS
In summary, we have developed an ML-based drug discovery
platform to systematically identify design solutions for
optimizing peptide-based drugs. As a validation, we exploited
the secretin peptide backbone as a scaffold to determine a
solution space for designing novel GLP-1R agonists with a
selective receptor profile and improved physicochemical
properties. This unprecedented QSAR approach enables
accelerated development of peptide drug candidates on
multiple parameters and demonstrates a novel approach that
can be applied for future developments of peptide drug
candidates.

■ EXPERIMENTAL SECTION
General Procedure for Peptide Library Synthesis. Peptide

libraries were synthesized using standard Fmoc-based solid phase
methods on a SyroII fully automated parallel peptide synthesizer
(MultiSynTech GmbH, Germany) equipped with a heating block.
Tentagel S RAM resin with a loading of 0.23−0.25 mmol/g (Rapp
polymer GmbH, Germany) was used. Fmoc deprotection was
performed in two stages by treating the resin with 40% piperidine/
DMF (0.2 M HOBt (1-hydroxybenzotriazole)) for 3 min at 45 °C
followed by 20% piperidine/DMF (0.1 M HOBt) for 7 min at 75 °C.
Asp, Cys, and His residues were Fmoc-deprotected at room
temperature; i.e. 40% piperidine/DMF (0.2 M HOBt) for 3 min
followed by 20% piperidine/DMF (0.1 M HOBt) for 15 min.
Coupling was performed using 0.5 M Fmoc-amino acid in 0.5 M
oxyma in DMF (except His which was dissolved in NMP) added in 5-
fold excess to the resin and activated by 5-fold DIC (N,N′-
diisopropyl-carbodiimide). Coupling conditions were single or double
couplings for 15 min at 75 °C, except for His and Cys residues, which
were double coupled for 15 min at 50 °C. Also, amino acids coupled
after Aib were double coupled. The resin was washed 5× with DMF
after Fmoc deprotection and 3× after couplings.
For peptides lipidated at the lysine residue, Boc-protected amino

acid was incorporated as the N-terminal residue, and the lipidation
position was incorporated as lysine (Mtt). The Mtt group (4-methyl-
trityl) was removed by treating the resin 3 times with 75% HFIP
(1,1,1,3,3,3-hexafluoro-propan-2-ol), 5% TIPS in DCM (dichloro-
methane) for 10 min. The resin was washed with 10% DIPEA in
DCM, followed by a 3× DMF wash. The linker residue(s) were
coupled to the epsilon-amino group of the deprotected lysine using
double- or triple-standard coupling conditions prior to coupling the
mono-t-butyl-protected fatty diacid. The fatty acid was double
coupled using 2 equiv building blocks.
For N-terminal lipidated peptides, linker residues and mono-t-butyl

protected fatty diacid were coupled to the N-terminus using the
conditions described above.
After synthesis, the resin was washed with DCM and dried, and the

polypeptide was cleaved from the resin by a 45 min treatment with
TFA (trifluoroacetic acid)/TES (triethylsilane)/DODT(2,2′-
(ethylenedioxy)diethanethiol)/water (93/2.5/2.5/2.0) at 40 °C
followed by precipitation and wash using cold diethyl ether.
Crude Peptide Libraries. The peptides were characterized by HR-

MS (Waters, Denmark) and quantified by LC-CAD (ThermoFisher
Scientific, Denmark). Finally, the crude peptide libraries were
lyophilized.
Purified GUB021974. The crude peptide was dissolved in

acetonitrile/water and purified by reverse phase HPLC using a
Waters preparative HPLC with C18 column (Reprosil Gold 200 Å, 5
μm, 30 mm × 250 mm), preparative pumps (waters 2545), UV/vis
detector (Waters 2489) and a Waters fraction collector III. The
mobile phase was run with a gradient of buffer A (0.1% TFA in H2O)

and buffer B (0.1% TFA in acetonitrile at a flow rate of 20 mL/min at
room temperature). Relevant fractions were analyzed, pooled, and
lyophilized. Finally, the peptide was freeze-dried using a Telstar
benchtop freeze-drieder. Peptide purity and mass were determined by
analytical RP-HPLC-MS on an ACQUITY UPLC Peptide CSH C18
column (Waters, ACQUITY UPLC Peptide CSH, C18, 130 Å, 1.7
μm, 2.1 mm × 100 mm) using a Waters Acquity HPLC System
equipped with a 3100 Mass Detector. Analysis was performed by
gradient elution with buffer A (0.3% TFA in H2O) and buffer B (0.3%
TFA in acetonitrile) at a temperature of 40 °C (gradients used were
40−60%B over 14 min). GUB021794: purity = 95%; calc. mass:
3862.3871; m/z = 1288.2 (m + 3/3).
In Vitro Functional Assay: General Procedure for the

Determination of hGLP-1R Potency. A CHO-K1 cell line stably
overexpressing the hGLP-1R was obtained from Euroscreen (FAST-
0145L), expanded, aliquoted, and frozen. An aliquot was thawed and
plated in DPBS with 0.05% casein and 0.5 mM IBMX (2000 cells/
well) in a 384-well format. The cells were then immediately
stimulated for 30 min at room temperature with graded doses of
test compound using human GLP-1(7−36) (synthesized at Gubra) as
a positive control. cAMP accumulation was measured using a Cisbio
assay for Gs-coupled receptors (cat. no. 62AM4PEC), where the assay
reagents were added as per the manufacturer’s instructions and time-
resolved fluorescence energy transfer recorded after one hour on a
CLARIOstar (BMG Labtech) plate reader.
In Vitro Functional Assay: General Procedure for Determi-

nation of hSCTR Potency. Frozen division arrested CHO-K1 cells
stably overexpressing the hSCTR was obtained from PerkinElmer
(ES-712-AF). Alternatively, a CHO-K1 cell line stably overexpressing
the hSCTR was obtained from Euroscreen (FAST-0161L), expanded,
aliquoted, and frozen. An aliquot was thawed and plated in DPBS with
0.05% casein and 0.5 mM IBMX as 2000 cells/well in a 384-well
format. The cells were then immediately stimulated for 30 min at
room temperature with graded doses of test compound using human
secretin (synthesized at Gubra) as a positive control. cAMP
accumulation was measured using a Cisbio assay for Gs-coupled
receptors (cat. no. 62AM4PEC), where the assay reagents were added
as per the manufacturer’s instructions and time-resolved fluorescence
energy transfer recorded after 1 h on a CLARIOstar (BMG Labtech)
plate reader.
Biophysics: General Procedure for Determination of

Solubility and Fibril Formation. Peptides were dissolved in buffers
(50 mM sodium phosphate at pH 7.0) to 267 μM and incubated for
1−2 h at room temperature. The samples were then divided into two
replicates of 80 μL in a black 384-well plate (μ-clear, Greiner Bio-
One) and mixed with Thioflavin T (ThT) to a final concentration of
4 μM. The plate was centrifuged for 2 min at 2000 rpm to remove air
bubbles, sealed, and placed in a plate reader (CLARIOstar, BMG).
First, the turbidity of the samples was measured as the absorbance at
600 nm as an indication of precipitated material. Second, the plate
reader temperature was set to 40 °C and the fluorescence was
measured every 10 min for 72 h by exciting the ThT at 450 nm and
measuring the emission at 480 nm. Samples were stressed by shaking
the plate at 700 rpm (linear) for five min before every measurement,
and fibril formation was determined as the average emission for each
sample.
Data Modeling. A random forest model22 was constructed for

each in vitro endpoint. Features consisted of the peptide sequences as
well as the specific plate number for synthesis and assay, respectively.
For the deep mutational scan, peptide sequences were encoded using
z-scales,23 and for the remaining data sets, peptide sequences were
one-hot encoded (binary classification of the presence or absence of
each amino acid in each position). The models were implemented in
the statistical programming language R using the randomForest
package version 4.6.14, and SHAP values were computed based on
the random forest models using the treeSHAP package version 0.1.1.
Ethics. All animal experiments were approved by The Danish

Animal Experiments Inspectorate (License No. 2017-15-0201-
01378). Animal experiments were conducted in agreement with
internal Gubra bioethical guidelines that are fully compliant with
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internationally accepted principles for the care and use of laboratory
animals.
Pharmacokinetics in Rats. Male Spraque Dawley rats were

obtained from Janvier (Janvier Laboratories, France) at 6 weeks of
age. The animals were single-housed on the day of arrival. After 1
week of acclimatization, the animals (n = 3) were codosed with two
test peptides; one compound was dosed intravenously and the other
was dosed subcutaneously. In a parallel group (n = 3), the same two
test peptides were dosed with opposite routes of administration. This
allowed for profiling both the intravenous and subcutaneous
administration routes and obtaining key pharmacokinetics parameters.
Following dose administration, blood samples (90 μL) were collected
in K2EDTA tubes at time points: 0.17, 1, 3, 6, 24, 30, 48, 72, and 96 h
post-dosing. Plasma was obtained by centrifugation of the blood
samples (3000 × g, 10 min 4 °C), and the plasma samples were frozen
at −70 °C until analysis.
Pharmacokinetics parameters were calculated by noncompartmen-

tal analysis (NCA) of the individual plasma concentration−time
profile from the animals. NCA was performed in the R-package
NonCompart, using the log-linear trapezoidal method for the
estimation of AUC and AUMC. AUC0−∞ was extrapolated <20%.
LC-MSMS Analysis. Plasma concentrations were measured by

LC-MSMS using electrospray ionization and multiple reaction
monitoring. Calibration standards and quality control (QC) samples
were prepared in a species-match matrix. In brief, 15 μL calibration
standards, QC, and study samples were extracted by protein
precipitation using 60 μL of methanol followed by the addition of
45 μL of Milli-Q water. Samples were shaken (800 rpm) at room
temperature for 5 min before centrifugation (2570 × g, 40 min, 4 °C),
and the supernatant was transferred to a LoBind PCR plate. Samples
were analyzed on a Thermo Triscend UHPLC system coupled to a
Sciex API 6500+ mass spectrometer. Samples were subject to online
SPE cleanup on an HLB column (1 × 50 mm, Waters) before being
loaded onto an Aeris Peptide XB C18 column (3.6 μm, 100 Å, 2 × 50
mm, Phenomenex, Torrance, USA) analytical column. The mobile
phases consisted of acetonitrile and Milli-Q H2O both containing
0.1% V/V formic acid.
Pharmacodynamics: Effect on Weight-Loss. Male C57BL/

6JRj mice were obtained from Janvier (Janvier Laboratories, France),
and group-housed in a controlled environment (12/12 h light-dark
cycle, lights off at 3 PM, 22 °C ± 2 °C, humidity 50% ± 10%). Each
animal was identified by an implantable subcutaneous microchip
(PetID Microchip, E-vet, Haderslev, Denmark). Mice arrived at 5
weeks of age and were offered tap water and regular chow (Altromin
1324, Brogaarden, Denmark) or diet-induced obesity (DIO) was
induced by offering ad libitum access to a 60% high-fat diet (5.15
kcal/g; 60 kcal% fat, 20 kcal% carbohydrates, 20% kcal% protein;
D12492, Ssnif, Soest, Germany) for 46 weeks before study start. The
mice were kept on a diet throughout the study. Mice were
randomized according to body weight in week −1. The mice were
SC-dosed once daily with Vehicle (50 mM phosphate, 3.5%
mannitol) Lean (n = 10), Vehicle DIO (n = 10), positive control
semaglutide (Ozempic, Novo Nordisk A/S, Denmark) 10 nmol/kg (n
= 10) or the GLP-1R agonists; GUB021794, at 3, 10, or 30 nmol/kg
(n = 10 mice/group) for 28 days. Body weight and food intake were
measured daily from days −3 to 28. Whole-body lean/fat tissue
composition was analyzed by noninvasive EchoMRI scanning
(EchoMRI-900, Houston, TX, USA) performed on study day 28.
Terminal exposure was measured using LC-MSMS on samples
obtained 24 h after the last dosing.
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