Clinical translatability of the GAN diet-induced obese and biopsyconfirmed mouse model of MASH

20-

3

100**-**

5

Vehicle Resmetirom

Lanifibranor

GAN DIO-MASH mouse

n=97 mice n=101 mice

Λ.,	+h		KC
Au	u	U	15

Henrik H. Hansen, Maja W. Andersen, Martin Rønn Madsen, Denise Oró, Michael Feigh

Gubra, Hørsholm Kongevej 11B, Hørsholm, Denmark

		•		

1	Resmetirom	
	GAN DIO-MASH mouse	Clinical trial
100 ਭੁ	Worsening \widehat{v} 100 No Change \widehat{v}	ພິ ¹⁰⁰ MAESTRO-NASH ph

Corresponding author Henrik H Hansen - hbh@gubra.dk

Background & Aim

Translational animal models are essential in preclinical drug discovery for metabolic dysfunction-associated steatohepatitis (MASH), formerly known as nonalcoholic steatohepatitis (NASH). The Gubra-Amylin NASH (GAN) dietinduced obese (DIO) mouse is an industrystandard, biopsy-confirmed translational model of MASH with progressive fibrosis. The present study aimed to assess robustness of liver histological outcomes following treatment with clinically relevant drugs in the GAN DIO-MASH mouse with reference to FDA/EMAaccepted histological endpoints.

Methods

Male C57BL/6J mice were fed the GAN diet (40 kcal-% fat, 22% fructose, 10% sucrose, 2% cholesterol) for ≥34 weeks. GAN DIO-MASH mice (n=14-18 per group) with biopsyconfirmed MASH (NAFLD Activity Score, NAS \geq 5) and fibrosis (fibrosis stage \geq F1) were administered resmetirom, semaglutide, lanifibranor, elafibranor, obeticholic acid, firsocostat or vehicle for 12 weeks. Histopathological pre-to-post assessment of NAS and fibrosis stage was evaluated against primary histological endpoints applied in corresponding clinical trials, i.e. resolution of MASH (inflammation score≤1; hepatocyte ballooning=0, with at least a 2-point reduction in NAS) with no worsening of liver fibrosis; at least 1-stage fibrosis improvement without worsening of MASH. Data was pooled from at least two individual studies per compound. Statistical analyses were performed using Dunnett's test one-factor linear model (change in NAS, fibrosis stage) or Fisher's exact test (clinical primary histological endpoints). *p<0.05, **p<0.01, ***p<0.001 compared to vehicle controls.

Figure 1. Resmetirom (MGL-3196, THR-β agonist) improves MASH and fibrosis stage in GAN DIO-MASH mice and MASH patients. Left panels: Change in NAFLD Activity Score (NAS) and fibrosis stage in GAN DIO-MASH mice following 12 weeks of treatment with resmetirom (3 mg/kg, PO, QD). Pooled data from 6 individual studies in GAN DIO-MASH mice (n=15-18 mice per group in each study). Right panels: Primary clinical histological outcomes in GAN DIO-MASH mice with reference to corresponding clinical phase-3 trial (MAESTRO-NASH trial, Harrison et al., NJEM, 2024).

Vehicle Resmetirom

5/97 mice 17/101 mice

26%

Placebo Resmetirom

44/318 patients 83/321 patients

Clinical trial

Figure 2. Semaglutide (GLP-1 receptor agonist) improves MASH in GAN DIO-MASH mice and MASH patients. Left panels: Change in NAFLD Activity Score (NAS) and fibrosis stage in GAN DIO-MASH mice following 12 weeks of treatment with semaglutide (30 nmol/kg, SC, QD). Pooled data from 9 individual studies in GAN DIO-MASH mice (n=14-18 mice per group in each study). Right panels: Primary clinical histological outcomes in GAN DIO-MASH mice with reference to corresponding clinical phase-2 trial (Newsome et al., NEJM, 2020).

GAN DIO-MASH mouse Clinical trial	

Conclusion

- Histological outcomes in GAN DIO-MASH mice are comparable to corresponding clinical trials for resmetirom (MAESTRO-NASH), semaglutide (Newsome et al. NJEM 2020) and lanifibranor (NATIVE).
- Obeticholic acid reverses MASH but not fibrosis in GAN DIO-MASH mice, being line with the FLINT phase-2 trial, whereas the opposite effect has been reported in the pivotal REGENERATE trial.
- Elafibranor resolves MASH in GAN DIO-

Figure 3. Lanifibranor (pan-PPAR agonist) improves MASH and fibrosis in GAN DIO-MASH mice and MASH patients. Left panels: Change in NAFLD Activity Score (NAS) and fibrosis stage in GAN DIO-MASH mice following 12 weeks of treatment with lanifibranor (30 mg/kg, PO, QD). Pooled data from 2 individual studies in GAN DIO-MASH mice (n=14-16 mice per group in each study). Right panels: Primary clinical histological outcomes in GAN DIO-MASH mice with reference to corresponding clinical phase-2 trial (NATIVE trial, Franque et al., NEJM, 2021).

Figure 4. Differential effects of elafibranor (PPARα/δ-agonist) in GAN DIO-MASH mice vs. MASH patients Left panels: Change in NAFLD Activity Score (NAS) and fibrosis stage in GAN DIO-MASH mice following 12 weeks of treatment with elafibranor (30 mg/kg, PO, QD). Pooled data from 3 individual studies in GAN DIO-MASH mice (n=13-17 mice per group in each study). Right panels: Primary clinical histological outcomes in GAN DIO-MASH mice with reference to corresponding clinical phase-3 trial (RESOLVE-IT trial, press release May 5, 2020).

Obeticholic Acid		6 Firsocostat			
GAN DIO-MASH mouse	Clinical trial	GAN DIO-MASH mouse	<u>Clinical trial</u>		

MASH mice, being consistent with the GOLDEN-505 phase-2 trial but contrasting no histological benefits in the RESOLVE-IT phase-3 trial.

- Firsocostat improves MASH in GAN DIO-MASH mice, although histological endpoints were not met in the ATLAS phase-2 trial.
- The GAN DIO-MASH mouse model faithfully reproduces histological outcomes of key compounds in current late-stage clinical development, highlighting translatability and utility of GAN DIO-NASH mice in preclinical drug discovery for MASH.

Scan the QR code to learn more about our services within liver diseases

Left panels: Change in NAFLD Activity Score (NAS) and fibrosis stage in GAN DIO-MASH mice following 12 weeks of treatment with elafibranor (5 mg/kg, PO, QD). Pooled data from 4 individual studies in GAN DIO-MASH mice (n=14-18 mice per group in each study). Right panels: Primary clinical histological outcomes in GAN DIO-MASH mice with reference to corresponding clinical phase-2 trial (ATLAS trial, Loomba et al., Hepatology, 2021).

www.gubra.dk

Left panels: Change in NAFLD Activity Score (NAS) and fibrosis stage in GAN DIO-MASH mice following 12 weeks of treatment with elafibranor (30 mg/kg, PO, QD). Pooled data from 2 individual studies in GAN DIO-MASH mice (n=14-16 mice per group in each study). Right panels: Primary clinical histological outcomes in GAN DIO-MASH mice with reference to corresponding clinical phase-3 trial (REGENERATE trial, Younossi et al., Lancet, 2019).